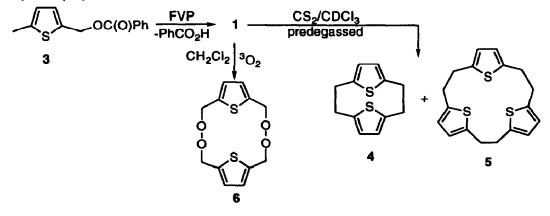


0040-4039(94)00849-3

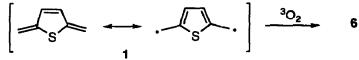
Reaction of 2,5-Dimethylene-2,5-dihydrothiophene with Triplet Oxygen

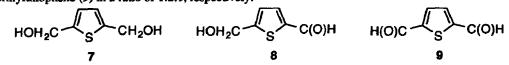
Chin-Shui Huang, Chun-Chieh Peng and Chin-Hsing Chou*


Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan, 80424, China

Abstract: 2,5-Dimethylene-2,5-dihydrothiophene (1), prepared by the pyrolysis of 5-methylthenyl benzoate (3), has been detected by low-temperature NMR spectroscopy. 1 reacts with triplet oxygen to form a cyclic bisperoxide 6. Upon heating, 6 decomposes to give 2,5-bis(hydroxymethyl)thiophene (7), 2-formyl-5-hydroxymethylthiophene (8) and 2,5-diformylthiophene (9) in a ratio of 1:2:1, respectively.

The reactive 2,5-dimethylene-2,5-dihydrothiophene (1), a thiophene analogue of p-quinodimethane (2),¹⁻¹⁰ has been prepared both in solution^{5,9} and by pyrolysis,¹¹ and its UV and IR spectral data have been reported by matrix isolation technique.¹¹ Compound 1, once generated, undergoes di- and trimerization reactions to give a cyclic dimer and a cyclic trimer. In this communication we report the detection of 1 by low-temperature NMR and the result of the reaction of 1 with triplet oxygen.


1 was prepared by the flash vacuum pyrolysis (FVP) of 5-methylthenyl benzoate (3) at 600 $^{\circ}$ C and ca. 10 $^{-2}$ torr by the procedure that has been previously described.¹² ¹H and ¹³C NMR spectra of the product mixture collected in predegassed 1:1 mixture of CDCl₃/CS₂ at -75 $^{\circ}$ C indicated that 1 was the primary pyrolysis product of 3 in 90% yield.¹³ When the product mixture was warmed to room temperature , 1 was converted to cyclic dimer (4, 5%) and trimer (5, 30%)¹⁴ along with substantial amounts of polymers. A similar result was obtained when 1 was collected in predegassed CH₂Cl₂. However, when 1 was collected in CH₂Cl₂ without preclusion of oxygen, the major product formed was a cyclic bisperoxide 6 (45%) along with small amounts of 4 (trace) and 5 (3%).


4175

When oxygen was bubbled through the solution of 1 in CH_2Cl_2 at -78 °C and allowed to warm to room temperature, 6 increased to 83%. This shows that atmospheric triplet oxygen was responsible for the oxidation of 1 to 6. Based on the poor solubility of 6 in ether, 6 can be purified by washing it with ether and redissolving it in either CH_2Cl_2 or $CHCl_3$. The structure of 6 was determined from its ¹H and ¹³C NMR spectral data¹⁵ and CIMS spectral data, by using CH_4 as a reactant gas, in which a $[M+1]^+$ peak at 285 was observed.¹⁵ Further evidence for the formation of 6 was obtained by reducing 6 with LiAlH₄ in THF, from which 2,5bis(hydroxymethyl)thiophene (7) was formed as the sole product.

p-Quinodimethane (2) is known to behave chemically as a diradical⁴ and react with triplet oxygen to give poly-*p*-quinodimethane peroxide.³ It is plausible that a diradical form of 1 may be involved in the reaction of 1 with oxygen.

Furthermore, when the solution of 6 in CH_2Cl_2 was kept at room temperature for more than two weeks, 6 decomposed to give a quantitative yield of 7, 2-formyl-5-hydroxymethylthiophene (8) and 2,5diformylthiophene (9) in a ratio of 1:2:1, respectively.

References and Notes

- 1. Szwarc, M. Nature, 1947, 160, 403.
- 2. Errede, L. A.; Landrum, B. F. J. Am. Chem. Soc. 1957, 79, 4852.
- 3. Errede, L. A.; Hopwood, S. L. Jr. J Am. Chem. Soc. 1957, 79, 6507.
- 4. Errede, L. A.; Hoyt, J. M. J. Am. Chem. Soc. 1960, 82, 436.
- 5. Winberg, H. E.; Fawceett, F. S.; Mochl, W. E.; Theobald, C. W. J. Am. Chem. Soc. 1960, 82, 1428.
- 6. Errede, L. A.; Gregorian, R. S.; Hovt, J. M. J. Am. Chem. Soc. 1960, 82, 5218.
- 7. Williams, D. J.; Pearson, J. M.; Levy, M. J. Am. Chem. Soc. 1970, 92, 1436.
- 8. Kaupp, G. Angew. Chem. Int. Ed. Engl. 1976, 15, 442.
- 9. Ito, Y.; Mityata, S.; Nakatsuka, M.; Saegusa, T. J. Org. Chem. 1981, 46, 1043.
- 10. Yamashita, Y.; Kobayashi, Y.; Miyashi, T. Angew. Chem. Int. Ed. Engl. 1989, 28, 1052.
- 11. Munzel, N.; Kesper, K.; Schweig, A.; Specht, H. Tetrahedron Lett. 1988, 29, 6239.
- 12. Chou, C. H.; Trahanovsky, W. S. J. Am. Chem. Soc. 1986, 108, 4138.
- 13. 1: ¹H NMR (1:1 CS₂/CDCl₃, -75 °C) δ 6.46 (s, 2H), 5.19 (s, 2H), 4.96 (s, 2H); ¹³C NMR (1:1 CS₂/CDCl₃, -75 °C) δ 149.02, 134.99, 104.06.
- ¹H NMR and mass spectral data of 4 and 5 are identical to that of the authentic samples.⁹ 4: ¹³C NMR (CDCl₃) δ 151.18, 126.80, 32.12. 5: ¹³C NMR (CDCl₃) δ 140.30, 124.31, 31.17.
- 15. 6: ¹H NMR (CDCl₃) δ 6.91 (s, 4H), 5.03 (s, 8H); ¹³C NMR (CDCl₃) δ 139.46, 127.91, 71.17;
 CH₄-CIMS m/z (rel. int.) 285 (1, M⁺+1), 143 (100, M⁺/2 +1), 127 (38).

(Received in China 3 January 1994; accepted 30 January 1994)